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Abstract. Let ϕ : H → G be a group homomorphism. A ϕ-cellular
automaton is a continuous function T : AG → AH that is ϕ-equivariant
in the sense that h · T (x) = T (ϕ(h) · x) for all h ∈ H, x ∈ AG. Each
ϕ-cellular automaton T : AG → AH may be factorized as T = ϕ∗ ◦ τ ,
where τ : AG → AG is an id-cellular automaton and ϕ∗ : AG → AH is the
pullback de�ned by ϕ(x) = x ◦ ϕ, for all x ∈ AG. We study under which
conditions this factorization is unique, and we prove that it is when G
is a torsion-free abelian group. Moreover, we de�ne the restriction of a
ϕ-cellular automaton.

Keywords: Cellular automata · group homomorphism · unique factor-
ization.

1 Introduction

Let G be a group and let A be a �nite set with at least two elements. The
con�guration space AG is the set of all functions of the form x : G→ A. This is
a topological space with the prodiscrete topology, which is the product topology
of the discrete topology of A. The group G acts on AG via the shift action
· : G×AG → AG which is de�ned by

(g · x)(k) = x(g−1k), ∀x ∈ AG, g, k ∈ G.

For a group homomorphism ϕ : H → G, a ϕ-cellular automaton is de�ned
in [1] as a function T : AG → AH such that there exists a �nite subset T ⊆ G,
called a memory set, and a local map µ : AT → A satisfying that

T (x)(h) = µ((ϕ(h−1) · x)|T ), ∀x ∈ AG, h ∈ H.

The classical de�nition of a cellular automaton is recovered when H = G and
ϕ = id is the identity homomorphism.

Example 1. Let A = {0, 1}. For all x ∈ AZ and (i, j) ∈ Z2, de�ne a function

T : AZ → AZ2

by

T (x)(i, j) = (x(i+ j − 1) + x(i+ j) + x(i+ j + 1)) mod (2)



2 Castillo-Ramirez, De Los Santos Baños

Then, T : AZ → AZ2

is a ϕ-cellular automaton with homomorphism ϕ : Z2 → Z
de�ned by ϕ(i, j) = i + j, for all (i, j) ∈ Z2. The following diagram shows the
image of a given con�guration x ∈ AZ, where a black box denotes a 1 and a
white box denotes a 0.

x = . . . . . .
⇓

. . . . . .

. . . . . .

. . . . . .
T (x) = . . . . . .

. . . . . .

. . . . . .

. . . . . .

The following theorem summarizes the three main results obtained in [1].

Theorem 1. Let G and H be groups, and let ϕ : H → G be a homomorphism.

1. A function T : AG → AH is a ϕ-cellular automaton if and only if T is
continuous in the prodiscrete topologies and ϕ-equivariant in the sense that

h · T (x) = T (ϕ(h) · x), ∀h ∈ H,x ∈ AG,

where · denotes the shift actions of G on AG and of H on AH .

2. Let T : AG → AH be a ϕ-cellular automaton with memory set T ⊆ G and
let S : AH → AK be a ψ-cellular automaton with memory set S ⊆ H.
Then, S ◦ T : AG → AK is a (ϕ ◦ ψ)-cellular automaton with memory set
ϕ(S)T := {ϕ(s)t : s ∈ S, t ∈ T}.

3. A ϕ-cellular automaton T : AG → AH is invertible (in the sense that there
exists a ψ-cellular automaton S : AH → AG such that T ◦ S = idAH and
S ◦ T = idAG) if and only if T is bijective.

This theorem generalizes three classical results on cellular automata (see [3, Ch.
1]), including the famous Curtis-Hedlund-Lyndon theorem.

Lemma 1 ([2]). For any ϕ-cellular automaton T : AG → AH there exists a
unique id-cellular automaton τ : AG → AG such that

T = ϕ∗ ◦ τ,

where ϕ∗ : AG → AH is de�ned by ϕ∗(x) = x ◦ ϕ, for all x ∈ AG.

In the proof of Lemma 1, τ : AG → AG is de�ned as the id-cellular automaton
whose memory set and local map are the same as the ones of T : AG → AH .

A natural question is to ask when the factorization of Lemma 1 is unique.
In the following section, we give some su�cient conditions for the uniqueness of
this factorization.
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2 Unique factorization

First of all, we show that for any homomorphisms ϕ, ψ : H → G and id-cellular
automata σ, τ : AG → AG, if ϕ∗ ◦ τ = ψ∗ ◦ σ, then τ = σ. Let µ : AT → A
and ν : AS → A be the local maps for τ and σ, respectively. By evaluating
ϕ∗ ◦ τ = ψ∗ ◦ σ on x ∈ AG and then on the identity element e ∈ H, we obtain

µ(x|T ) = τ(x)(e) = (ϕ∗(τ(x)))(e) = (ψ∗(σ(x)))(e) = σ(x)(e) = ν(x|S).

This implies that τ = σ.
Therefore, the unique factorization question reduces to ask when ϕ∗ ◦ τ =

ψ∗ ◦ τ implies ϕ∗ = ψ∗, which is equivalent to ϕ = ψ.

Example 2. 1. If τ is a constant function, then ϕ∗ ◦ τ = ψ∗ ◦ τ for every homo-
morphisms ϕ and ψ.

2. If τ is surjective, then ϕ∗ ◦ τ has a unique factorization, as τ is right-
cancellative.

3. If ϕ∗ ◦ τ is injective, then it has a unique factorization. To show this, observe
that ϕ∗ ◦ τ = ψ∗ ◦ τ , implies that

τ(ϕ(h) · x) = τ(ψ(h) · x), ∀h ∈ H,x ∈ AG.

By injectivity, we have ϕ(h) · x = ψ(h) · x for all h ∈ H,x ∈ AG. Since the
shift action of G on AG is faithful, we conclude that ϕ(h) = ψ(h) for all
h ∈ H, so ϕ = ψ.

For two homomorphisms ϕ, ψ : H → G, we de�ne the di�erence set by

∆(ϕ, ψ) := {ψ(h)−1ϕ(h) : h ∈ H} ⊆ G.

Note that ∆(ϕ, ψ) = {e} if and only if ϕ = ψ.

Theorem 2 ([2]). If ∆(ϕ, ψ) is in�nite, then ϕ∗ ◦ τ ̸= ψ∗ ◦ τ for every non-
constant id-cellular automaton τ : AG → AG.

Corollary 1. If G is a torsion-free abelian group, then every non-constant ϕ-
cellular automaton T : AG → AH has a unique factorization.

Proof. As G is abelian, then ∆(ϕ, ψ) is a subgroup of G. As G is torsion-free,
then ∆(ϕ, ψ) must be in�nite, so the result follows by the previous theorem.

In [4], Ville Salo has shown that the previous corollary may be generalized to
an arbitrary torsion-free group G using the fact that the image of an id-cellular
automaton is always a strongly irreducible subshift.

Theorem 3 ([2]). Let G be an abelian or locally �nite group. Then, ∆(ϕ, ψ) is
in�nite if and only if ϕ∗◦τ ̸= ψ∗◦τ for every non-constant id-cellular automaton
τ : AG → AG.
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3 Restriction

For a subgroup K ≤ H and a homomorphism ϕ : H → G, let T : AG → AH

be a ϕ-cellular automaton with memory set T ⊆ ϕ(K) and local function µ :

AT → A. Let ϕ|ϕ(K)
K : K → ϕ(K) be the domain and codomain restriction

of ϕ. The restriction of T with respect to K is the ϕ|ϕ(K)
K -cellular automaton

TK : Aϕ(K) → AK de�ned by

TK(x)(k) := µ((ϕ(k−1) · x)|T ), ∀x ∈ Aϕ(K), k ∈ K

Lemma 2 ([2]). With the above notation, TK is the unique ϕ|ϕ(K)
K -cellular au-

tomaton such that the following diagram commutes

AG AH

Aϕ(K) AK

T

Resϕ(K) ResK

TK

where ResK : AH → AK is de�ned by

ResK(x) = x|K , ∀x ∈ AH .

Induction of ϕ-cellular automata is analogously de�ned in [2].

Theorem 4 ([2]). Let T : AG → AH be a ϕ-cellular automaton with memory
set contained in ϕ(K).

1. T is injective if and only if TK is injective and ϕ is surjective.

2. T is bijective if and only if TK is bijective and ϕ is bijective.

The previous result is well-known for id-cellular automata (see [3, Ch. 1]).
Moreover, it is known that an id-cellular automaton τ : AG → AG is surjective
if and only if τK is surjective. So far, it is an open question whether this result
may be generalized for ϕ-cellular automata.

Acknowledgments. The second author was supported by a CONAHCYT Postdoc-

toral Fellowship Estancias Posdoctorales por México, No. I1200/320/2022.
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Abstract. Let G be a group and let A be a �nite set with at least two
elements. A cellular automaton (CA) is a transformation τ : AG → AG

de�ned via a local map µ : AS → A, where S is a �nite subset of G, that
is applied in parallel and homogeneously on AG using the shift action of
G on AG. We say that τ is generated by one pattern if the identity element
e is in S and there exists p ∈ AS such that µ(p) ̸= p(e) and µ(z) = z(e)
for all z ∈ AS \ {p}. Such cellular automata are often idempotent; for
example, we have shown that if p is constant or symmetrical, then τ is
idempotent. The idempotency of quasi-constant patterns has also been
characterized, but it is an open problem to characterize idempotency of
an arbitrary pattern. Furthermore, we have computational evidence that
shows that, over a torsion-free group, non-idempotent CA always have
in�nite order.

Keywords: Cellular automata · Generating patterns · Idempotents.

1 Introduction

Let G be a group and let A be a �nite set with at least two elements. The set of
con�gurations AG consists of all maps from G to A. A pattern (or a block) over
a �nite subset S ⊆ G is a function z : S → A, and the set of all patterns over S
is denoted by AS . The shift action of G on AG is the function · : G×AG → AG

de�ned as:

(g · x)(h) := x(g−1h).∀x ∈ AG, g, h ∈ G.

A cellular automaton (CA) is a function τ : AG → AG such that there exists
a �nite subset S ⊆ G, called a memory set of τ , and a local map µ : AS → A
such that

τ(x)(g) = µ((g−1 · x)|S), ∀x ∈ AG, g ∈ G.

The famous Curtis-Hedlund-Lyndon Theorem (see [2, Theorem 1.8.1]) estab-
lishes that a function τ : AG → AG is a cellular automaton if and only if τ is
G-equivariant in the sense that τ(g · x) = g · τ(x), for all g ∈ G, x ∈ AG, and τ
is continuous in the prodiscrete topology of AG (which is the product topology
of the discrete topology of A).
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De�nition 1. Let τ : AG → AG be a cellular automaton with memory set
S ⊆ G such that e ∈ S, and local de�ning map µ : AS → A. We say that τ is
generated by a pattern p ∈ AS if

µ(p) ̸= p(e) and µ(z) = z(e), ∀z ∈ AS \ {p}.

In such case we write τ = τap and µ = µa
p, where a := µ(p).

When A = {0, 1}, we have that a = µ(p) must be equal to the complement
of p(e), so we may simply write τp and µp instead of τap and µa

p, respectively.

Example 1. Let G := Z, A := {0, 1} and S := {−1, 0, 1}. Cellular automata
τ : AZ → Z that admit a memory set S are called elementary cellular automata
(ECA) and they are labeled identi�ed by a Wolfram number (see [4, Sec. 2.5]).
For example, the local map of the ECA 200 is de�ned by the following table:

z ∈ AS 111 110 101 100 011 010 001 000
µ(z) ∈ A 1 1 0 0 1 0 0 0

In this table, the elements of AS are identi�ed with triplets z−1z0z1 ∈ A3, where
zi = z(i) for i ∈ S. The second row of the table is the binary number 11001000,
which correspond to the decimal number 200. We see that this cellular automaton
is generated by the pattern p = 010.

Denote by Xp the subshift of AG de�ned by a single forbidden pattern p :
S → A; explicitly,

Xp := {x ∈ AG : (g−1 · x)|S ̸= p, ∀g ∈ G}.

For example, for G = Z and A = {0, 1}, the subshift X11 is the so-called golden
mean shift [5, Ex. 1.2.3.].

Lemma 1. Let τap : AG → AG be the cellular automaton generated by a pattern

p ∈ AS. Then,

Fix(τap ) := {x ∈ AG : τap (x) = x} = Xp.

2 Idempotent CA generated by one pattern

A cellular automaton τ : AG → AG is idempotent if τ2 = τ , which is equivalent
to Fix(τ) = im(τ). Hence, by Lemma 1, a cellular automaton τap is idempotent
if and only if im(τap ) = Xp.

The following results were obtained in [1].

Theorem 1. Let τap : AG → AG be the cellular automaton generated by a pat-

tern p ∈ AS. If p is constant (i.e. p(s) = p(e) for all s ∈ S) or p is symmetrical
(i.e. S = S−1 and p(s) = p(s−1) for all s ∈ S), then τap is idempotent.
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Theorem 2. Let τap : AG → AG be the cellular automaton generated by a quasi-

constant pattern p ∈ AS, which means that there exists r ∈ S such that p
restricted to S \ {r} is constant. Then τap is idempotent if and only if one of
the following holds:

1. a ̸= p(s) for all s ∈ S.
2. r ̸= e and r2 ∈ S.
3. r = e and S = S−1.

The set CA(G;A) of all cellular automata τ : AG → AG is a monoid with
the composition of functions. Any group automorphism ϕ ∈ Aut(G) induces an
automorphism of CA(G;A) via conjugation by the homeomorphism ϕ⋆ : AG →
AG de�ned by ϕ⋆(x) = x ◦ ϕ, for all x ∈ AG. Similarly, any permutation of the
alphabet α ∈ Sym(A) induces an automorphism of CA(G;A) via conjugation
the invertible cellular automaton with memory set S = {e} and local de�ning
map α : A → A. We may use these automorphisms to prove the following result.

Lemma 2. Let ϕ ∈ Aut(G), α ∈ Sym(A), and p ∈ AS. Then, τap is idempotent

if and only if τ
α(a)
α◦p is idempotent if and only if τapϕ is idempotent, where pϕ :

ϕ(S) → A is de�ned by pϕ(ϕ(s)) := p(s), for all s ∈ S.

Table 1. Idempotency of CA de�ned by paterns over S ⊆ Z.

S Idempotent Non-idempotent

[−1, 1] [000] [010] [001]

[0, 2] [000] [010] [001] [011]

[−1, 2] [0000] [0010] [0101] [0110] [0001] [0011] [0100] [0111]

[0, 3] [0000] [0100] [0110] [0001] [0010] [0011] [0101] [0111]

[−2, 2] [00000] [00010] [00100] [00110] [00001] [00011] [00101]
[01001] [01010] [01110]

[0, 4] [00000] [00100] [01000] [00001] [00010] [00011] [00101]
[01010] [01100] [01110] [00110] [00111] [01001] [01011]

[01101] [01111]

[−3, 3] [0000000] [0000011] [0000100] [0000001] [0000010] [0000111]
[0000101] [0000110] [0001000] [0001001] [0001010] [0010011]
[0001011] [0001100] [0001101] [0100101]
[0001110] [0010001] [0010010]
[0010100] [0010101] [0010110]
[0011001] [0011010] [0011100]
[0011101] [0011110] [0100001]
[0100010] [0100110] [0101001]
[0101010] [0101110] [0110001]
[0110110] [0111110]

Table 1 shows the idempotency of cellular automata generated by patterns
p ∈ AS with A := {0, 1} and S ⊆ G := Z. The subset S is given as an interval
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[s, t] := {k ∈ Z : s ≤ k ≤ t}. Let α := (1, 0) is the permutation that transposes
0 and 1, and ϕ ∈ Aut(Z) is the automorphism induced by multiplication by −1.
In Table 1, the patterns are given by orbits [p] = {p, α ◦ p, pϕ, (α ◦ p)ϕ}, when
S = S−1, and [p] = {p, α ◦ p}, when S ̸= S−1.

3 Future work

Fig. 1. Spacetime diagram of τ100.

The characterization of the
idempotency of τap for an ar-

bitrary pattern p ∈ AS is still
an open problem.

We have shown compu-
tationally that all the non-
idempotent cellular automata
given by Table 1 have in�nite
order. This means that the
cyclic subsemigroup ⟨τp⟩ is in-
�nite, or, equivalently, that
)(τp)

m ̸= (τp)
n for all n ̸= m.

For example, if p = 100, we
may de�ne x ∈ AZ as x(k) =
1 for all k < 0 and x(k) = 0
for all k ≥ 0. The space-time
diagram showing the iteration
of τp on x is given by Figure

3. Since (τp)
m(x) ̸= (τp)

n(x) for all n ̸= m, we deduce that τp has in�nite order.

Conjecture 1. Let G be a torsion-free group and p ∈ AS . If τap is not idempotent,
then τap has in�nite order.

Acknowledgments. The second author were supported by CONAHCYT Becas na-

cionales para estudios de posgrados.
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Abstract. Until recently, it seemed that the attempt to describe all
number-conserving non-uniform one-dimensional binary cellular automata
with radius one and half was doomed to failure from the start due to the
enormous computational complexity behind it. However, we have man-
aged to find a tool that allows to significantly reduce the complexity of
the issue, so that exploring the set of such cellular automata (at least
partially) becomes possible.

Keywords: Non-uniform cellular automata, number conservation, finite
grids.

Although in the classical formulation cellular automata (CAs) are uniform,
recently scientists have increasingly turned to their non-uniform counterparts,
allowing them to model phenomena that do not necessarily occur in a strictly
“uniform universe". In the non-uniform CAs each single cell is allowed to have its
own local updating rule (see, e.g., Pries et al. [4] or Dennunzio et al. [2]). This
approach incredibly strongly increases the space of CAs under consideration.
Indeed, given a one-dimensional grid of n cells, we can define exactly qmq

uniform
q-state m-input CAs and as many as

(
qmq

)n

non-uniform CAs (with the same
setting) on it. For this reason, the study of non-uniform CAs is most often
limited to the so-called non-uniform elementary CAs (ECAs), in which each cell
is allowed to have its own local updating rule belonging to Wolfram’s set of 256
elementary local rules (see, e.g., [3, 6]). Of course, several articles introduce more
general definitions, such as the case where the cells may use different rules with
different neighborhood sizes [1, 2, 5]. However, the non-uniform ECAs remain
the primary focus in this research direction.

Given a set of all non-uniform q-state m-input CAs on n-cell grid, one would
like to know which ones satisfy a given property, like for example being number-
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conserving or reversible. Such a task is very challenging, as it is not possible to
simply search the entire space under consideration to find those CAs that suit us.
Despite these difficulties, it has recently been possible to give the detailed char-
acterization of all number-conserving non-uniform ECAs, both on finite grids [7]
and on infinite grids [8], as well as to identify those of them that are reversible.

After receiving these results, a natural question immediately arose:

Question 1. What do all number-conserving non-uniform one-dimensional bi-
nary CAs with radius 3/2 on finite grids look like? Which of them are reversible?

The first attempts to solve this problem did not look optimistic. To get a feeling
for the level of complexity of this problem, let us note that on a grid of length
n as many as (216)n = (65 536)n different non-uniform CAs can be defined. In
addition, as shown by the experience gained in [7], the study should concentrate
on grids with a length of at least n = 7. This means that if we wanted to check all
of the possible rules on the smallest reasonable grid, we would need to examine
(65 536)7 ≈ 5.2·1033 of them. Analysing all rules is therefore clearly not a feasible
approach to this problem.

However, we have recently been able to construct a directed graph Π with
the following property: there is one-to-one correspondence between the set of all
length-n closed directed walks in Π and the set of all number-conserving non-
uniform one-dimensional binary CAs with radius 3/2 on a finite grid with n cells
(assuming that n ≥ 7). This provides us with a very powerful tool to investigate
non-uniform cellular automata of this type.

Let us remind that a one-dimensional binary local rule with radius 3/2 (i.e.,
with neighborhood size four) is any function f : {0, 1}4 → {0, 1}, hence, the
total number of such functions is 224

= 216 = 65 536. The set of all such local
rules will be denoted by F . For f ∈ F , its conjugation fC and reflection fR are
defined by

fC(x, y, z, u) = 1−f(1−x, 1−y, 1−z, 1−u) and fR(x, y, z, u) = f(u, z, y, x) .

Let Gn = {0, 1, . . . , n − 1} denote the grid of n cells, where n is a positive
integer. We will consider the so-called periodic boundary conditions: the last cell
n − 1 is adjacent to the first cell 0. Any n-tuple x = (x0, x1, . . . , xn−1) ∈ Xn =
{0, 1}n is called a configuration (of length n) and represents the states of the
cells in Gn: the state of cell i ∈ Gn in a configuration x is denoted by xi.

Each rule sequence [f0, f1, . . . , fn−1] ∈ Fn induces a non-uniform CA H :
Xn → Xn defined for any x ∈ Xn and i ∈ Gn by:

H(x)i = fi(xi−1, xi, xi+1, xi+2) . (1)

A non-uniform H on Gn is called number-conserving if µ(H(x)) = µ(x)
for each configuration x ∈ Xn, where for a configuration x ∈ Xn, we denote
by µ(x) the sum of all states in x, i.e., µ(x) =

∑
i∈Gn

xi. Of course, if H =

[f0, f1, . . . , fn−1] is number-conserving, then so are HC = [fC
0 , fC

1 , . . . , fC
n−1],

HR = [fR
n−1, fR

n−2, . . . , fR
0 ] and HCR = [fCR

n−1, fCR
n−2, . . . , fCR

0 ].
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In [9] we have described how to generate the directed graph Π = (V, E)
with the following property: for each n ≥ 7 there is a one-to-one correspondence
between the set of all number-conserving non-uniform one-dimensional binary
CAs with radius 3/2 on a finite grid with n cells and the set of all length-n closed
directed walks in this graph (by a closed directed walk we mean a sequence of
connected vertices of which the first and last are the same with repetition of
edges and vertices allowed).

Each vertex v ∈ V is some quadruple of local rules from F and the mentioned
correspondence is as follows. If, for example, H = [f0, f1, . . . , f6] is number-
conserving, then in Π there is the following closed directed walk:

(f0, f1, f2, f3) → (f1, f2, f3, f4) → (f2, f3, f4, f5) → (f3, f4, f5, f6) →

→ (f4, f5, f6, f0) → (f5, f6, f0, f1) → (f6, f0, f1, f2) → (f0, f1, f2, f3) .

The graph Π has exactly 273 538 vertices and 2 301 044 edges. It contains
four strongly connected components Π1, Π2, Π3 and Π4 with 136 768, 136 768,
1 and 1 vertices, respectively.

Although the graph Π is too large to be drawn in its entirety, it is small
enough to be explored using the standard tools of graph theory. We hope to
present some examples of such an exploration. At the present time, we are not
yet able to describe all number-conserving non-uniform one-dimensional binary
CAs with radius 3/2 in detail, but it looks like such a description will not be as
simple as in the case of radius 1. However, the availability of the graph Π fuels
the hope that such a description will be eventually possible.
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Abstract. The parity problem is a classic benchmark for the testing of
the computational power of cellular automata. In the traditional formu-
lation, the problem involves cyclic configurations of odd length, which
should converge to a fixed point of all 0s or all 1s based on the initial
number of 1s, without global access to the sequence. The parity problem
can be solved by a local rule with neighborhood size of 9. We are inter-
ested in finding a local rule with the smallest possible neighborhood that
can correctly classify each initial configuration according to its parity.

Keywords: Cellular automata · parity problem · active state transition.

Cellular automata (CAs) are considered a model of distributed computing
that operates without shared global memory. To explore the computational po-
tential of CAs, various decision problems have been defined and analyzed. Among
them, classification problems deserve special attention, especially in the context
of binary cellular automata on finite grids with periodic boundary conditions.
In these problems, the goal is to correctly classify initial configurations based on
certain properties they possess.

The parity problem is one of the examples of the classification problems.
This problem, in its classical formulation, is to find a CA that can properly
classify each initial configuration into two classes according to its parity: if the
initial configuration contains an odd number of 1s then the global state of the
grid should converge to the fixed point of all 1s; otherwise, i.e., if the initial
configuration contains an even number of 1s then the global state of the grid
should converge to the fixed point of all 0s. This problem seems to be much
harder than the famous density classification problem (DCP), because the output
is altered simply by a flip in any one of the input bits. Moreover, according to
the formulation of the problem, it is immediately obvious that it has no sense
for even-sized grids (see, for example, [1]). For this reason, the solution to this
problem is considered to be a CA (actually: a local rule f), which correctly
classifies all configurations of odd length.
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It turns out that unlike DCP, the parity problem has a solution. In [1] Betel et
al. described the local rule with radius 4 (i.e., its neighborhood consists of nine
cells), called BFO rule, that solves the parity problem. The question naturally
arises: is there a simpler rule that can also solve the parity problem? By writing
simpler, we mean that its neighborhood has less than nine cells.

In [1], a rigorous proof is given that five cells in a neighborhood is not enough
to construct a local rule capable of solving the parity problem. We have investi-
gated the case of six cells in a neighborhood, and it turns out that six cells are
still not enough [2]. Unfortunately, the answer to the question of how it is for
seven cells is not so simple. First of all, the method used for five and six cells is
not very adaptable. While using it for five cells was rather straightforward, for six
cells it became very intricate and tedious. For seven cells in a neighborhood, the
complexity of the problem increases so much that this method becomes useless
at all.

The authors of [1] left open the question of whether there is a rule of radius
3 that solves the parity problem. However, they have made many attempts to
find such a rule (see, for example [3]). Since these attempts have always failed,
some of the researchers are convinced that such a rule does not exist. However,
it is worth bearing in mind that the set of all binary local rules of radius 3 is
astronomically large: it has as many as 2128 ≈ 3.4 · 1038 elements. Thus, even
the most advanced computer-assisted searches are unable to examine even one
percent of this set.

The research we have done so far has also not given a definitive answer, but
we are rather of the opinion that such a local rule of radius 3 capable of solving
the parity problem exists. So far, we have found several dozens of local rules
that correctly classified all configurations from a rather large test set. All these
rules are defined by means of so-called active transitions and Table 1 shows one
of such rules having 18 groups of active transitions. To understand this table, let
us clarify the meaning of the first group. [••00111] with 0 in bold means that
for any values of both •, f(••00111) = 1, that is, it is a clustered notation of
the following four active transitions:

f(0000111) = 1, f(0100111) = 1, f(1000111) = 1, f(1100111) = 1.

The presented set of active transition groups is not the smallest. The shortest
sets we found have 13 groups, but this does not at all mean that these rules are
simpler for theoretical consideration.

Although we still do not have strict mathematical proof of the correctness of
this local rule, we believe that it may be a solution to the parity problem.
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[••00111] [•0110••]

[11100••] [••0110•]

[•000100] [101111•]

[001000•] [•111101]

[010010•] [1001000]

[••10100] [•10100•]

[111011•] [•111011]

[•010010] [0001001]

[1011100]

[0011101]

Table 1. The LUT of a rule with radius 3, which probably solves the parity problem
(the symbol • refers to any value).
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Abstract

In this paper, we show that a D-dimensional cellular automaton with equicontinuity points which
is not equicontinuous admits at least a periodic factor. After that, we characterize the spectrum of
D-dimensional cellular automata from the topological and the ergodic point of view where we show
that cellular automata which are equicontinuous and/or with fully blocking pattern cannot have
measurable irrational eigenvalues.

Keywords: Cellular automata, eigenvalues, ergodic theory.

1 Introduction
Cellular automata are employed in variety of modeling contexts. They dates back to Von Neumann in
the late 1940s and the first model were biologically motivated. During the last years they have been
used to model complex systems in many different domains as physics and biology.

A Cellular automaton is a discrete model of computation that evolve in space and time. It consists
of a regular grid of cells that can only adopt only one given state at each time unit. For each cell, a set
of cells called its neighborhood is defined relative to the specified cell and it state at each time unit is
determined by applying the associated local rule of the cellular automaton to the current state of the
cell and the states of the cells in which is connected. Typically, the rule for updating the state of cells
is the same for each cell and does not change over time. A configuration is a snapshot of the state of
all automata in the lattice. The lattice is usually Zd where d represents the dimension of the cellular
automaton.

One way to study the dynamical properties of a cellular automaton is to endow the space of con-
figurations with a topology and consider the cellular automaton as a discrete dynamical system and by
equipping the space of configurations with the uniform Bernoulli measure [7, 8], cellular automata can
be studied from the ergodic theory point of view. The uniform Bernoulli measure plays a central role in
the ergodic theory of cellular automata. This measure is invariant if and only if the cellular automaton
is surjective [7].

In this paper, we study the eigenvalues of D-dimensional cellular automata which formalize some kind
of structure representing the nonchaotic part of the dynamics. They correspond to complex rotations
that are factors. We start by showing that any D−dimensional cellular automaton with equicontinuity
points admits at least one periodic factor. After that we characterize the spectrum of D−dimensional
cellular automata from the topological point of view first and then we show that if the measure of the
set of points of surjective cellular automaton with an eventually periodic trace (we mean by a trace
of a given point x studying its evolution in the central window of radius (2r)d under the iteration of
the cellular automaton) is equal to one then the cellular automaton cannot have measurable irrational
eigenvalues.
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Furthermore, We show that if the measure of the set of equicontinuity points of F is of positive
measure, then either the cellular automaton F have a measurable rational eigenvalue or the associated
eigenfunction is null on the set of equicontinuity points. We finish by giving two applications of this
result, one in the case when the cellular automaton is equicontinuous, an other one when the cellular
automaton admits at least one fully blocking pattern.

2 Basic definitions
In this section, we present some basic notions in symbolic dynamics used along this paper.

Notation 1 • A is a finite alphabet.

• The interval [a, b] represent the set of integers froma to b.

• The size of a patternw ∈ Ai1 × i2 × ...× id is |w| = (i1, i2, ..., id).

• Denote byAZd
the set of all configurations in Zd constructed over the alphabetA.

• For any pattern w, we define the cylinder [w] at position
−→
i = (i1, i2, ..., id) ∈ Zd by:

[w]−→
i

= {x ∈ AZd
: x dQ

s =1
[is ,is + |w| s ]

= w}

• The cylinder at the origin is denoted by[w]−→
0 .

Definition 2 The following application define a distance overAZd
:

∀x ̸= y ∈ AZd
, d(x, y) = 2− min {||

−→
i || ∞ :x−→

i ≠ y−→
i }where ||−→i ||∞ = max

s= 1,D
{is}.

The spaceAZd
endowed withd is compact, perfect, and totally disconnected in the product topology [6].

• Any vector
−→
i ∈ Zd determines a continuous shift map σ−→

i
: AZd → AZd

defined by

σ−→
i

(x)−→
j

= x−→
j +

−→
i

, ∀−→
j ∈ Zd.

2.1 Cellular Automata
Definition 3 Let k be a subset inZd and f : Ak → A be a function called the local rule.
A cellular automaton determined byf is the function F : AZd → AZd

defined by :

F (x)−→ m = f(x−→ m+ k ) for all x ∈ AZd
and all −→m ∈ Zd.

Curtis-Hedlund and Lyndon [5] showed that cellular automata are exactly the continuous transfor-

mations of AZd
that commute with all shifts. We refer to k as a radius of F.

Definitions 4 • A point x is a periodic point of period p if F p(x) = x and ∀i < p, F i(x) ̸= x.

• If there exist an integer m such that F m(x) is periodic then x is called an eventually periodic point.

• The periodic points of the shift are called spatially periodic points and the periodic points forF that
are not shift periodic are called strictly temporally periodic points [3]. Any spatially periodic point
is eventually periodic for the cellular automaton.
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• A pattern w of size (k1, k2, ..., kd) is called (r1, r2, ..., rd)−blocking with offset (p1, p2, ..., pd) if there
exist a non-negative integers{pi}i∈ [1,d] satisfying pi ≤ ki − ri for all i ∈ [1, d] such that for any
x, y ∈ [w]−→

0 and n ≥ 0, we have: F n(x) dQ

j =1
[pi ,pi + ri )

= F n(y) dQ

j =1
[pi ,pi + ri )

.

When the offset pi = 0, ∀i = i ∈ [1, d] the pattern w is said fully blocking.

Figure 1: Blocking word, for d=1 Figure 2: Fully blocking word, for d=1

• A point x is a point of equicontinuity for the cellular automaton (AZd
, F ) if

∀ε > 0, ∃δ > 0 : ∀y : d(x, y) < δ ⇒ ∀n ∈ N, d(F n(x), F n(y)) < ε

• The cellular automaton F is equicontinuous if all points are points of equicontinuity and is almost
equicontinuous if the set of equicontinuity contain a countable intersection of dense open sets.

• The cellular automaton F is said to be sensitive to the initial conditions if

∃ε > 0, ∀x ∈ AZd
, ∀δ > 0, ∃y : d(x, y) < δ, ∃n ∈ N : d(F n(x), F n(y)) ≥ ε.

Kurka [6] introduced a classification of one dimensional cellular automata according to sensitivity
and equicontinuity of the cellular automaton.

Theorem 5 Let F be a one dimensional cellular automaton with radiusr. The following properties are
equivalent:

1. F is not sensitive.

2. F admit an r − blocking pattern.

3. F is almost equicontinuous.

This equivalence do not hold in higher dimension, Gamber [2] proved that the implication 3 ⇒ 1
and 1 ⇒ 2 still holds in all dimensions and the existence of a fully blocking pattern implies the almost
equicontinuity of the cellular automaton.

Theorem 6 ( [2]) Let F : AZd → AZd
with radius r. If there exists a fully blocking pattern of sizekd

for F where k ≥ r then F is almost equicontinuous.
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2.2 Factors
Let (AZd

, F ) and (BZd
, G) be two cellular automata and π be a continuous map π : AZd → BZd

such
that π ◦ F = G ◦ π.

AZd F→ AZd

π ↓ ↓ π

BZd →
G

BZd

1. If π is bijective then we say that π is a conjugacy and the cellular automata (AZd
, F ),(BZd

, G) are
conjugate.

2. If π is surjective then we say that π is factor map and the cellular automaton (BZd
, G) is a factor

of (AZd
, F ).

2.3 Measurable Dynamics

We endow the symbolic space AZd
with the sigma-algebra ß generated by all cylinder sets and µ the

uniform Bernoulli measure which gives to any letter from the alphabet A the same probability.
As the uniform measure is only invariant when the cellular automaton is surjective then the following

(AZd
,ß, F, µ) denote a surjective cellular automaton equipped with the uniform Bernoulli measure.

An element of the unit circle is an eigenvalue of a cellular automaton F associated to the eigenfunction
g if we have g ◦ F = λg. Whether we place ourselves from the topological or ergodic perspective the
function g is required either to be continuous or measurable. An eigenvalue λ = e2πiα is said irrational
if α is an irrational number [8].

A cellular automaton (AZd
,ß, F, µ) is ergodic if the measure of any invariant subset of Zd is either 0

or 1. Otherwise, F is ergodic if any eigenfunction is of constant module [8].

2.3.1 Gilman’s Classification

Gilman proposed a classification for cellular automata on the basis of a measurable version of the existence
of equicontinuity points. The cellular automata considred are equipped with a Bernoulli measure and
are not necessarily surjective.

Definition 7 Let (AZ , F, µ) be a cellular automaton whereµ is the Bernoulli measure.
For a point x ∈ AZ , we define the following set:

B[a,b](x) = {y ∈ AZ : ∀n ∈ N, F n
[a,b](y) = F n

[a,b](x)}

Definition 8 Let (AZ , F, µ) be a cellular automaton equipped with a Bernoulli measureµ.

• A point x ∈ AZ is a µ- equicontinuous point if for any m > 0 we have:

limn→ + ∞
µ([ x[ − n,n ] ]

T
B[ − m,m ] (x))

[x[ − n,n ] ] = 1

• F is almost expansive if there exist an integerm > 0 such that for any point x ∈ AZ , we have
µ(B[− m,m](x)) = 0.

Proposition 9 Cellular automata (AZ , F, µ) whereµ is the Bernoulli measure are divided into the three
following classes:

1. F ∈ A if F admits a topological equicontinuity point.

2. F ∈ B if F admits a µ -equicontinuity points without any topological ones.

3. F ∈ C if F is almost expansive.
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3 Results

3.1 Topological results
In this section, we focus on the set of periodic factors of a D-dimensional cellular automata with equicon-
tinuity points that are not equicontinuous. After that we show that a D-dimensional cellular automaton
cannot have topological irrational eigenvalues.

Definition 10 A fully blocking word w is of order p if the period of the sequence[F i([w]−→
0 )]−→

0 , i ∈ N
is p. i.e.

∀x ∈ AZd
, ∃m, p ∈ N : F m+ np([w])−→

0
= F m([w])−→

0
, ∀n ∈ N.

Proposition 11 Let (AZd
, F ) be a cellular automaton with radiusrd. If F admit a fully blocking word

w of period p ̸= 1 such that for any integer n , F n(w) is fully blocking too, then F has at least a non
trivial periodic factor.

Proof. Let n be an integer and x be an equicontinuity point for F admitting occurrences of the blocking

pattern w at the coordinates given by
−→
i ∈ Zd such that:


−→
i

 =

−−−−−−→
(i1, ..., id)

 = max
1≤ j≤ d

|ij | = nr and ∀j ∈ [1, d], ij is a divisor of n.

The sequence of patterns (F i(x)[− nr,nr+ r]d )i∈ N is eventually periodic. This is due to the density of
the shift periodic configurations that have an eventually periodic trace and to the equicontinuity of x.
Then, there exist integers m, p such that for all n ∈ N :

F m(x)[− nr,nr+ r]d = F m+ np(x)[− nr,nr+ r]d .

Consider the sets Wk of cylinder sets defined by Wk = [F k(x)[− nr,nr+ r]d ] such that m ≤ k ≤ m + p − 1

and denote by W =
m+ p− 1S

k= m

Wk. By assumption, we have ∀i ∈ N, F i(w) is a fully blocking pattern what

means that F i(x) is an equicontinuity point for any integer i and for m ≤ k ≤ m + p − 1, we have:
F (Wk) ⊆ Wk+1 .

Let (Z/pZ, P = (x + 1)modp) be a periodic dynamical system and π be a function defined from W
to Z/pZ as follow:

π(x) = k − m for x ∈ Wk and m ≤ k ≤ m + p − 1

Then we have:

π(F (x)) =

�
k + 1 − m if x ∈ Wk st. m ≤ k ≤ m + p − 2

1 if x ∈ Wm+ p− 1

P (π(x)) = (π(x) + 1)modp =

�
k + 1 − m if x ∈ Wk st. m ≤ k ≤ m + p − 2

1 if x ∈ Wm+ p− 1

By consequence, the restriction of F to W admit (Z/pZ, P = (x + 1)modp) as a periodic factor of period
p.

Proposition 12 Let (AZd
, F ) be a cellular automaton, thenF cannot have a topological irrational eigen-

values.
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Proof. Let α be a real number and g be a continuous non zero function such that :

g ◦ F (x) = e2πiαg(x), ∀x ∈ AZd
.

The set of periodic points for the shift is dense in AZd
then g cannot be null on this set. So, there

exist at least one shift periodic point x such that g(x) ̸= 0. Or, as the shift periodic points are eventually
periodic under the iterations of F then there exist integers m, p ∈ N such that: F m(x) = F m+ ip(x) for
all i ∈ N. This leads to the following:

g(F m+ p(x)) = e2πipα.g(F m(x))

What means that e2πipα = 1,by consequence α can only be rational.

3.2 Ergodic results
In this part, we suppose that the cellular automaton is surjective and the space of the configurations is
endowed with the uniform Bernoulli measure µ.

Definition 13 Let (AZd
, F, µ) be a surjective cellular automaton.

Define the measurable setsQn by:

Qn = {x ∈ AZd
: ∃m, p ∈ N : ∀i ∈ N : F m+ ip(x)[− n,n]d = F m(x)[− n,n]d }

= {x ∈ AZd
: (F m(x)[− n,n]d )i∈ N is eventually periodic}.

Qn(k) = {x ∈ AZd
: ∃m, p ∈ N, 1 ≤ p ≤ k, ∀i ∈ N : F m+ ip(x)[− n,n]d = F m(x)[− n,n]d }.

The set Qn(k) represents the set of elements fromQn with periods bounded byk. Qn =
S

k∈ N Qn(k).

Lemma 14 Let (AZd
, F, µ) be a surjective cellular automaton.

If µ(Qn) = 1, ∀n ∈ N then F cannot have measurable irrational eigenvalues.

Proof. Suppose that there exist α ∈ R, a subset H ⊂ AZd
of measure 1 and a measurable nonzero

function g such that: ∀x ∈ H, g(F (x)) = e2πiαg(x).

For d > 0 denote by Ed the measurable set of elements x of AZd
satisfying |g(x)| > d. We define by

Hn(η) for any η > 0 the measurable following set:

Hn(η) = {x ∈ H : ∀y ∈ H, x
[ − n,n ]d = y

[ − n,n ] d ⇒ |g(x) − g(y)| < η}.

By Lusin’s theorem, there exist a closed set F ⊆ H such that:

�
µ(H \ F ) < ϵ, for any ϵ > 0

Any sequence of elements yn ∈ F that converge to x ∈ F , g(yn) converges to g(x)

In particular, for any point x ∈ H, consider the sequence of elements yn from H that share the
same coordinates with x at the positions [−n, n]d , then |g(yn) − g(x)| < η , ∀η > 0. What means that
µ(Hn(η)) =µ(F ) > 1 − ϵ when n tends to infinity.

We choose d0 such that µ(Ed0 ) = a > 0 and take η0 < d0.
For 0 < ε < a

2 there exist m > 0 such that for any n > m we have:

µ(Hn(η0)) > 1 − ε

3
and µ(Qn) > 1 − ε

3
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Set a value n > m and let k be an integer and let Qn(k) be the measurable part of Qn where the period
is bounded by k. When k tends to infinity Qn(k) tends to Qn. In particular, for ε

3 > 0 there exists then
k0 such that for all k ≥ k0: |µ(Qn(k)) − µ(Qn)| < ϵ

3 . i.e,

µ(Qn(k)) ≥ µ(Qn) − ε

3
≥ 1 − 2ε

3
.

For fixed value k ≥ k0 the sequence F k(Qn(k))[− n,n]d is periodic and the period is bounded. So all the

points from F k(Qn(k))[− n,n]d have a common period p.

∀x ∈ Qn(k), ∀N ∈ N : F k(x)[− n,n]d = F k+ Np(x)[− n,n]d

Denote by S = Ed0 ∩ F − k((Hn(η0) ∩ Qn(k)).
Now, we will show that µ(S) > 0. We have:

µ(S) ≥ µ(Ed0 ) + µ(F − k(Hn(η0) ∩ Qn(k))) − 1

≥ µ(Ed0 ) + µ(Hn(η0)) + µ(Qn(k)) − 2

≥ a + 1 − ε

3
+ 1 − 2ε

3
− 2 ≥ a − ε >

a

2
.

Hence the set S = Ed0 ∩ F − k(Hn(η0) ∩ Qn(k)) is of positive measure.
By definition of the set Hn(η0) we have:

∀x ∈ S, ∀N ∈ N : |g(F k(x)) − g(F k+ Np(x)| < η0 (1)

Moreover,

∀x ∈ S, ∀N ∈ N : |g(F k(x)) − g(F k+ Np(x)| = |e2πikα − e2πi(k+ Np)α||g(x)| = |1 − e2πiNpα||g(x)|

If α is irrational then the sequence {e2πiNpα, N ∈ N} is dense in the unite circle. There exist then N0
such that |1 − e2πiN0 pα| > 1.
From the definition of the set Ed0 we have |g(x)| > d0 over the set S and we supposed η0 < d0 then we
obtain

|g(F k(x)) − g(F k+ N0 p(x)| = |1 − e2πiN0 pα||g(x)| > d0 > η0 (2)

The inequalities (1) and (2) are contradictory, then α cannot be irrational.

Remark 15 The the assumption of the Lemma 14 is not equivalent to the notion ofµ− equicontinuity
points. Indeed, the trace of anyµ− equicontinuity point is eventually periodic but opposite is not valid.
Furthermore, existence ofµ− equicontinuity points is not sufficient to have µ(Qn) = 1, ∀n ∈ N.

Proposition 16 Let (AZd
, F, µ) be a surjective cellular automaton.

If F is equicontinuous then its eigenvalues are all rational.

Proof. As the cellular automaton F is surjective and equicontinuous then there exist an integer p such
that F p = Id [6]. This means that µ(Qn) = 1, ∀n ∈ N, then F cannot have measurable irrational
eigenvalues.

Proposition 17 Let (AZD
, F, µ) be a cellular automaton. Suppose that the measure of the set of equicon-

tinuity points ξ is strictly positive and F admits a measurable eigenvalueα associated to an eigenfunction
g. Then, if g(x) ̸= 0, ∀x ∈ ξ , α cannot be irrational.
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Proof. Let α ∈ R be an eigenvalue associated to an eigenfunction g : AZd → C such that for any

equicontinuity point x ∈ AZd
, g(x) ̸= 0 .

As the trace of any equicontinuity point x is eventually periodic, this is due to the definition of

equicontinuity points and the density of the shift periodic points in AZd
.

then for any integer n ∈ N : ξ ⊂ Qn . This leads to µ(Qn) ≥ µ(ξ) = β > 0, ∀n ∈ N.
Consider the sets Hn(η), Ed defined in the lemma 14 and choose n ∈ N, η0 < d0 such that :

µ(Ed0 ) = 1 − a > 0, β − a > 0 and µ(Hn(η0)) > 1 − ϵ
2 . Denote by S = Ed0 ∩ F − k(Hn(η0) ∩ Qn(k))

where µ(Qn(k)) > β − ϵ
2 . We have:

µ(S) ≥ µ(Ed0 ) + µ(F − k(Hn(η0) ∩ Qn(k))) − 1

≥ µ(Ed0 ) + µ(Hn(η0)) + µ(Qn(k)) − 2

≥ 1 − a + 1 − ϵ

2
+ β − ϵ

2
− 2 >

β − a

2
> 0.

From Lemma 14, α cannot be irrational.

Corollary 18 Let (AZD
, F, µ) be a cellular automaton. If the set of equicontinuity points contains a

cylinder [u] then either its eigenvalue is rational or its associated eigenfunction is null on[u].

Proposition 19
Let (AZD

, F, µ) be a surjective cellular automaton with radiusr.
If F admit a fully blocking pattern w then F cannot have measurable irrational eigenvalues.

Proof. Let n be an integer. Consider the set τ(w, n) of points from AZd
where we will fill out with the

pattern w the coordinates given by
−→
i ∈ Zd such that


−→
i

 =

−−−−−−→
(i1, ..., id)

 = max
1≤ j≤ D

|ij | = m where n ≤ m ≤ n + r.

For any pattern u such that |u| = n × n, the cylinder defined over the pattern u filled out with w belong
to τ(w, n). Thus µ(τ(w, n)) > 0 . We show that any point from τ(w, n) has an eventually periodic

trace at the positions [−n − r, n + r]d. Indeed, consider a point y ∈ AZd
filled outside of the coordinates

[−n − r, n + r]d with the fully blocking patterns w then y by construction is an equicontinuity point that
belong to τ(w, n) and for ϵ = 2− nr, there exist δ > 0 such that: ∀x ∈ τ(w, n): d(F i(x), F i(y)) ≤ ϵ.

Recall that the values for all iterates (F i)i∈ N of y are determined just by the values of y in the
positions [−n, n]d then the sequence ([−n, n]d)i∈ Nis eventually periodic. Moreover, for a point x from
τ(w, n) there exist a preperiod m and a period p such that:

∀k ∈ N : F m(x)|[− n,n]d = F m+ kp(x)|[− n,n]d

which means that the sequence (F k(x)[− n,n]d )k∈ N is ultimately periodic for every x ∈ τ(w, n).
Therefore, τ(w, n) ⊂ Qn for all n and µ(Qn) > 0.
From the Proposition 17, F cannot have irrational measurable eigenvalues if its associated eigenfunction
is not null in

T
n∈ N Qn.
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4 Conclusion
The first result of this paper is about periodic factors of D-dimensional cellular automata where we
shown that D-dimensional cellular automata with an invariant set of fully blocking patterns admit as
factor at least a periodic one.

In the second part, we were interested in the spectrum of D-dimensional cellular automata where by
density of the shift periodic points they cannot have topological irrational eigenvalue.

We have shown that cellular automata that are equicontinuous cannot have measurable irrational
eigenvalues in all dimensions. Furthermore, If the cellular automaton admit a fully blocking patterns or
the set of equicontinuity points is of positive measure then either its associated eigenvalue is rational or
its eigenfunction is null on these sets. It still unknown if surjective cellular automata with equicontinuity
points but without being equicontinuous can or cannot have a measurable eigenvalue which is irrational
for D ≥ 2 with respect to the uniform Bernoulli measure. What about non surjective cellular automata?.
An interesting direction of future works is to know if the transitivity of a cellular automaton implies the
mixing property or not.

We know that transitive dynamical systems on the interval are mixing, is it possible to think that
dimension matter here, in other words are one dimensional transitive cellular automata mixing ? Is it
possible that this is not true in higher dimension ?.
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 3D Cellular Model of CO2 Spread With Random Walk 3 

    
Fig. 2. Random Walk models 

      
      CO2 sources increase the concentration of CO2, and the vents, doors, and windows 
decrease the concentration. To do so, CO2 particles move to the neighbor cells and 
increase their CO2 concentration. To add another dimension to the model, two more 
neighbors need to be defined in the model. To create different scenarios for simulation 
we designed a 3D web application as shown in figure 3. 

 

 
Fig. 3. A web application to design scenarios  

 
 CO2 producers were set in different areas of empty rooms. After 30 minutes of 

simulation, the entire room was saturated with high levels of CO2. Next, the layout of 
the room was modified to include vents. Once the distribution of CO2 within the model 
was verified, diffusion cells in different configurations were added to investigate vary-
ing distribution and diffusion patterns, allowing for the analysis of CO2 sensor place-
ment. Two CO2 sensor cells were added to both the left and right walls of the cubical 
room configuration boasting a window, door, and vent. A single CO2 generator was 
placed in the right cubical. The CO2 levels of the sensor cells were analyzed against 
time to see the level of CO2 that reached them along with the time it took to detect a 
significant increase. As described above in the one generator in a cubicle simulation, 



https://en.wikipedia.org/wiki/Random_walk
https://en.wikipedia.org/wiki/Random_walk
https://tinyurl.com/FAQ-aerosols
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Abstract. In 2013, the paper by Betel, Oliveira and Flocchini was pub-
lished, which presented a binary local rule, called BFO, after the sur-
names of its authors, that solves the parity problem. However, in 2023,
10 years later, a counterexample emerged that the BFO rule does not
work; moreover, speculation began that perhaps cellular automata are
not able to solve the parity problem in the classical way at all. During
our presentation, we hope to convince everyone that it is as in the title.

Keywords: Cellular automata, parity problem, BFO rule

One of the most frequently studied decision problems is the parity problem. In
its classical formulation, this problem consists of finding a CA that can properly
classify each initial configuration into two classes according to its parity: if the
initial configuration contains an odd number of 1s, then the global state of the
grid should converge to the fixed point of all 1s; otherwise, i.e., if the initial
configuration contains an even number of 1s, then the global state of the grid
should converge to the fixed point of all 0s. However, according to the formulation
of the problem, it is immediately clear that it makes no sense for even-sized grids.
For this reason, the solution to this problem is considered to be a CA (actually,
a local rule f ) that correctly classifies all configurations of odd length.

In 2013 it appeared, that there exists such a local rule that can solve the
parity problem. In fact, such a rule has been described in Betelet al. [1] and called
BFO. This local rule has radius 4 (i.e., its neighborhood consists of nine cells)
and, in general, the idea underlying the BFO rule design is to reduce the number
of blocks of 0s and 1s present in the initial configuration. This is accomplished
by propagating blocks of 1s to the right side, two cells per iteration, combined
with the simultaneous propagation of 0s to the left. Actually, the BFO rule is
much more complicated, as it must include the appropriate stopping conditions
for these two major trends to coexist and it can be described as follows (the
original formulation from [1]):

– Rightward growth of 1-blocksa singleton 1 grows to the right, by two 1s at
each step, if it is preceded and followed by at least two 0s, as prescribed by
transitions T3 and T4. A block of three or more 1s grows to the right if it is
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followed (on the right) by at least two 0s. This behavior is created by the
pair of transitions T1 and T2.

– Annihilation of pairs of 1s as a consequence of transitionsT5 and T6, an
isolated pair of 1s is always eliminated.

– Leftward growth of 0-blocksa (01) block moves to the left, leading a growing
block of 0s (at a growth rate of two 0s per step) if there are at least three
1s to its left and one of the following: (i) at least three 1s to the right of the
0 (the growth is obtained by the pair of transitions, (T9, T11); or (ii) at least
one 0 to its right (due to T9 and T10). Note that the pair (T9, T11) starts the
growth of a 0-block, while the pair (T9, T10) continues the growth as far as
possible.

– Local shift a (101) block is transformed into (110) if there are a 0 on its left
and at least two 0s on its right (combination of transitions T7 and T8).

– Local adjustment finally, if a (0110) block is preceded by at least three 1s
that is, (. . . 1110110. . .) occurs, in order to avoid parity errors due to the
annihilation of the pair of 1s, we force the creation of a solid block of 0s to
the right of the existing block of 1s with transition pair (T9, T12), so that
(. . . 1110110. . .) becomes(. . . 1000000. . .).

Since the LUT of the BFO rule contains as many as 512 values, it is not
worth specifying it in full, but only the so-called active transitions (ATs) are
indicated, as in Table 1.

T1 : [• 11100••• ] T5 : [••• 0110•• ]

T2 : [11100•••• ] T6 : [•• 0110••• ]

T3 : [• 00100••• ] T8 : [• 010100•• ]

T4 : [00100•••• ] T9 : [••• 11101• ]

T7 : [•• 010100• ] T10 : [111010••• ]

T11 : [1110111•• ]

T12 : [•• 1110110]
Table 1: The LUT of the BFO rule (the symbol • refers to any value).

Unfortunately, in the description of BFO there is a slight inaccuracy. For this
reason, if someone simply wants to use Table 1 to implement the BFO rule on
a computer, that person will very quickly find a counterexample of length 13,
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namely 0001110101001, which is a periodic configuration for BFO. But, fortu-
nately, the authors of [1] have described in great detail the idea of BFO action and
based on this description, the mentioned inaccuracy is easily corrected. Namely,
the sentence “Local shift a (101) block is transformed into (110) if there are a
0 on its left and at least two 0s on its right (combination of transitions T7 and
T8)." should be “ Local shift a (101) block is transformed into (011) if there are
at least two 0s on its left and a 0 on its right (combination of transitions T7 and
T8)" and consequently the transitions T7 and T8 should be properly redefined,
as in Table 2.

T1 : [• 11100••• ] T5 : [••• 0110•• ]

T2 : [11100•••• ] T6 : [•• 0110••• ]

T3 : [• 00100••• ] T8 : [•• 001010• ]

T4 : [00100•••• ] T9 : [••• 11101• ]

T7 : [• 001010•• ] T10 : [111010••• ]

T11 : [1110111•• ]

T12 : [•• 1110110]
Table 2: The LUT of the BFO rule with the correction (the symbol • refers to
any value).

In order to convince everyone that the BFO rule defined in Table 2 really
solves the parity problem, we will try to provide a rigorous mathematical proof.
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